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Abstract

Evolution strategies | a stochastic optimization method originally designed for

single criterion problems | have been modi�ed in such a way that they can also

tackle multiple criteria problems. Instead of computing only one e�cient solution

interactively, a decision maker can collect as many members of the Pareto set as

needed before making up his mind.

Apart from this feature one could also reect upon the algorithm as a simple model

of biological evolution. Following this idea one might emphasize the algorithm's

capability of self{adapting its parameters. Furthermore, the e�ect of polyploid

individuals corresponds in both `worlds'.

1 Introduction

It has become increasingly obvious that the optimization under a single scalar{valued

criterion | often a monetary one | fails to reect the variety of aspects in a world getting

more and more complex. Although V. Pareto [4] laid the mathematical foundations

already about a hundred years ago the existing tools for multiple criteria decision making

often demand too much of non{mathematicians who want to use them.

In order to overcome these di�culties a new method based on evolution strategies has

been developed being capable of giving a good insight into the structure of the Pareto

set by computing a �nite number of e�cient solutions.



2 Shortcomings of Conventional Methods

Numerous methods have been developed for vector optimization, e.g. linear vector opti-

mization, game theory, one global replacement criterion and others [3, 5]. Many of these

algorithms reduce the problem formulation to a scalar one. This seems tempting for two

reasons:

� In contrast to the original problem the reduced one (hopefully) has one distinct

solution.

� The decision maker may choose from a variety of approved procedures from the

domain of single criterion optimization.

Like many other approaches, however, this idea reduces the decision space prematurely,

i.e. before enough information is available.

Despite of the large number of numerical tools for vector optimization problems several

questions still remain:

� If a utility function is assumed, does it exist? And if so, has it been understood

correctly? How does the chosen utility function inuence the solution? How can

correlated objectives be dealt with? Is the solution obtained e�cient? Furthermore,

does it make sense to obliterate the information obtainable from K objectives?

� If the decision maker has to deliver aspiration levels, how can one measure their

inuence on the solution? How can one deal with the fact that any metric discrim-

inates those objectives with small absolute values? How does the solution obtained

depend on the chosen metric?

� What is there to do if the objectives are not commensurable?

3 Evolution Strategies ...

3.1 ... for Single Criterion Optimization

Evolution can be regarded as a sequence of self{organization steps, i.e. as the underlying

universal principle of any kind of self{organization. Modern research has proved nature's

strategies worth copying for technical or numerical optimization. Pioneering work in this

direction has been done by Holland [2], Bremermann [1], Rechenberg [6] and Schwefel

[7].



Technical problems have led to the development of evolution strategies as a method for

experimental optimization. Nowadays, they can also deal with parameter optimization

problems given as mathematical models of the type

minff(x) j x 2M � IRng
:

Multi{membered evolution strategies were �rst proposed by Schwefel [7, 8] as a robust,

general purpose optimization algorithm being very modest in terms of prerequisite math-

ematical assumptions: One only needs a criterion determining whether one alternative

is better than another. As well as genetic algorithms they have shown to be capable of

searching for the global optimum in parameter spaces which cause di�culties for gra-

dient algorithms. Their range of application also covers NP{hard problems such as the

Travelling{Salesman{Problem or problems with an optimum changing over time. Even

for pattern matching which does not belong to the classical domain of optimization evo-

lution strategies turned out to be useful. In fact, one can treat all problems which provide

some criterion (environment) evaluating an individual's �tness. Regarding the objective

function as a `black box' one can even search for optimum states in large{scale simulation

models.

In order to solve these single criterion optimization problems it proved to be su�cient to

imitate the following principles of nature:

� population (in order to enable collective learning)

� haploid individuals

� synchronous generations

� sexual propagation with recombination/crossing{over

� random mating

� mutation (`driving force')

� selection (`steering wheel')

Generally, one can understand mutation as a process of varying or generating propo-

sitions. Mutations in evolution strategies consist of adding normally distributed ran-

dom numbers with expectation zero and standard deviation �i to the object (decision)

variables (xi) thus securing a certain similarity between a parent and its o�spring(-s).

Mutations of the strategy (stepsize) variables �i, however, are log{normally distributed

so that doubling and halving may occur with equal probability. The selection step then

evaluates the usefulness of these variations.



3.2 ... for Multiple Criteria Optimization

For multiple criteria problems, however, two of the principles mentioned above have to

be modi�ed:

� Since the environment now consists of K objectives the selection step is provided

with a �xed user{de�nable vector that determines the probability of each objective

to become the sorting criterion in the K iterations of the selection loop. Alterna-

tively, this vector may be allowed to change randomly over time.

� Furthermore, the extension of an individual's genes by recessive information turned

out to be necessary in order to maintain the population's capability of coping with

a changing environment. The recessive genes enable a fast reaction after a sudden

variation of the probability vector. One can also observe this behaviour in nature:

The younger the environment the higher the portion of polyploid organisms. Figure

1 illustrates the interior structure of a diploid individual:

Figure 1: Genotype / Phenotype of an Individual

By presenting many solutions the algorithm provides the user with an idea of the tradeo�s

between the objectives. It should be noted that e�cient solutions in one generation may

become dominated by individuals emerging in a later generation. This explaines the

non{e�cient points in �gure 2 (left). For e�ciency reasons the `parents' of the next

generation are stored provisionally in an array that is cleaned out if there is not enough

space left for further individuals. If this operation does not result in enough free space

solutions `close' to one another are deleted. As an important side e�ect the elements of

the Pareto set are forced apart thus allowing a good survey with only a �nite number of

solutions. Figure 2 (right) displays the situation after tidying up:
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Figure 2: Graphical Output of the Algorithm

4 Results

When working with diploid individuals the inclusion of the recessive genes in the selection

step turns out to be vital. Otherwise, undisturbed by the outside world they lead such a

life of their own that an individual whose dominant genes have been freshened up with

recessive material has no chance of surviving the next selection step. The best results

were achieved with a probability of about 1=3 for exchanging dominant and recessive

genes. This value also serves as a factor when putting together the overall �tness vector.

Only in this way the additional recessive material can serve as a stock of variants. From

further test runs one can also conclude that diploid or, in general, polyploid individuals

are not worth the additional computing time in a static environment consisting only of

one objective function.

Since the algorithm tries to cover the Pareto set as good as possible a probability distri-

bution forcing certain minimum changes during the mutation step ought to yield better

results. Indeed, the (symmetric) Weibull distribution turned out to be better than the

Gaussian distribution.

The stochastic approach towards vector optimization problems via evolution strategies

leads to one major advantage: In contrast to other methods no subjective decisions are

required during the course of the iterations. Instead of narrowing the control variables



space or the objective space by deciding about the future direction of the search from an

`information vacuum' [3] the decision maker can collect as much information as needed

before making a choice which of the alternatives should be realized. Moreover, using a

population while looking for a set of e�cient solutions seems to be more appropriate than

just trying to improve one `current best' solution.

One might exploit the algorithm's capability of self{adapting its parameters even further:

The exchange rate between dominant and recessive genetic material can be adjusted

on{line thus providing the user with a measure of convergence. The self{adaptation

property largely depends on a selection scheme that forces the algorithm to `forget' the

good solutions (`parents') of one generation. When accepting a possible recession from

one generation to the next on the phenotype level individuals with a better `model' of

their environment, i.e. better step sizes �i are likely to emerge in later generations. This

kind of selection seems to be lavish at �rst sight but it favours better adapted settings,

thus speeding up the search in the long run.

5 Outlook

In future research it will be interesting to see whether further principles of nature are

worth copying, such as aging, fertility rates depending on the relative �tness or parallel

(sub{)populations. For example, the selection loop could be modi�ed in the following

way: Each time the appropriate fraction of the next generation is selected according to all

elements of the �tness vector one after another. By doing so one guarantees the survival

of the best individuals on each objective and, simultaneously, enhances the reproduction

probability of those individuals selected more than once, i.e. those that are better than

average on more than one objective.

One should, however, carry out `mutations' of the algorithm carefully and only if the

underlying natural principle has been fully understood.
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