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Abstract

During the last years, (global) optimization algorithms imitating certain princi-
ples of nature have proved their usefulness in various domains of applications. Es-
pecially those principles are worth copying where nature has found `stable islands'
in a `turbulent ocean' of solution possibilities. Such phenomena can be found in
annealing processes, central nervous systems and biological evolution which in turn
have lead to the following optimization methods: simulated annealing, (arti�cial)
neural networks and the �eld of evolutionary computation comprising genetic al-
gorithms, genetic programming, evolutionary programming and evolution strategies

on which this paper will focus.

Because these algorithms can serve as simple models of the underlying natural
processes, why not forget about their problem solving capabilities for a moment and
put the emphasis on their self{adapting behaviour? Why not take the opportunity
and study e. g. the role of mutation, recombination and selection pressure and their
relation to each other with simple objective function(s) serving as the environment in
the computer's arti�cial world? And why not even go one step further and translate
these results to other domains like biology, organizational psychology and economics,
thus stressing the similarity of the notions `self{organization' and `evolution' and
their usefulness as a common descriptive language across the scienti�c disciplines?

1 Introduction

Suppose we have to solve the following problem: According to some quality criterion

(objective function, model) we are looking for such a setting of the parameters (inputs,

regulators in Figure 1) that the output reaches its (global) optimum.

[ [quality function

cost,
efficiency,
deviation,
     ...   

Figure 1: The `black box'{model of optimization

More formally: Given a quality function (model)

f :M � IRn ! IR ;
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�nd a parameter setting ~x� 2M so that

f (~x) � f (~x�)

holds for all ~x 2M . The above is often abbreviated to f(~x)! max. f (~x�) is called global

maximum. Because of maxff (~x)g = �minf�f (~x)g the minimization task is equivalent.

What can we do in order to solve this problem?

1. We can either try to gain more knowledge or exploit what we already know about

the interior of the black box in Figure 1. If the objective function turns out to be

smooth and di�erentiable (see Figure 2, left) analytical methods will produce the

exact solution.

2. If this turns out to be impossible, we might resort to the brute force method of

enumerating the entire search space. But with the number of possibilities growing

exponentially in n | the number of dimensions (inputs) | this method becomes

infeasible even for low{dimensional spaces.

3. Consequently, mathematicians have developed theories for certain kinds of problems

leading to specialized optimization procedures. These algorithms perform well if

the black box ful�ls their respective prerequisites. For example, Dantzig's simplex

algorithm [6] probably represents the best known multidimensional method capable

of e�ciently �nding the global optimum of a linear, hence convex, objective function

in a search space limited by linear constraints.

Gradient strategies are no longer tied to these linear worlds, but they `smooth' their

world by exploiting the objective function's �rst partial derivatives one has to supply

in advance. Therefore, these algorithms rely on a locally linear internal model of

the black box. Newton strategies additionally require the second partial derivatives,

thus building a quadratic internal model. Quasi{Newton, conjugate gradient and

variable metric strategies approximate this information during the search.

The deterministic strategies mentioned so far cannot cope with deteriorations, so the

search will stop if anticipated improvements no longer occur. In a multimodal envi-

ronment (see Figure 2, right), these algorithms move `uphill' from their respective

starting points. Hence, they can only converge to the next local optimum.
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Figure 2: Easy and di�cult topologies of objective functions

Newton{Raphson{methods might even diverge if a discrepancy between their in-

ternal assumptions and reality occurs. But of course, these methods turn out to

be superior if a given task matches their requirements. Not relying on derivatives,

polyeder strategy, pattern search and rotating coordinate search should also be men-

tioned here because they represent robust non{linear optimization algorithms [17].

4. Dealing with technical optimization problems, one will rarely be able to write down

the objective function in a closed form ~x ! f (~x). We often need a simulation

model in order to capture reality. In general, one cannot even expect these models

to behave smoothly. Consequently, derivatives do not exist. That is why optimiza-

tion algorithms that can successfully deal with black box{type situations habe been

developed. The increasing applicability is of course paid for by a loss of conver-

gence velocity | compared to algorithms specially designed for the given problem.

Furthermore, the guarantee to �nd the global optimum no longer exists.

But why turn to nature when looking for more powerful algorithms?

In the attempt to create tools for various purposes, mankind has copied | often

instinctively | solutions `invented' by nature. Nowadays, one can prove in some cases
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that certain forms or structures are not only well adapted to their environment but have

even reached the optimum [14]. This is due to the fact that the laws of nature have

remained stable during the last 3:5 billion years. For instance, at branching points the

measured ratio of the diameters in a system of blood{vessels comes close to the theoretical

optimum provided by the laws of uid dynamics (2�1=3). This, of course, only represents

a limited, engineering point of view on nature. In general, nature performs adaptation,

not optimization.

The idea to imitate basic principles of natural processes for optimum seeking proce-

dures emerged more than three decades ago [4, 13, 10, 16]. Although these algorithms

have proved to be robust and direct optimization tools, it is only in the last �ve years

that they have caught the researchers' attention. This is due to the fact that many peo-

ple still look at organic evolution as a huge game of dice, thus ignoring the fact that this

`model' of evolution cannot have worked: a human germ{cell comprises approximately

50:000 genes, each of which consists of about 300 triplets of nucleic bases. Although the

four existing bases only encode 20 di�erent amino acids, 2015:000:000 � 1019:500:000 di�erent

genotypes had to be tested in only � 1017 seconds | the age of our planet. So, simply

`rolling the dice' could not have produced the diversity of today's complex living systems.

Accordingly, taking random samples from the high{dimensional parameter space of an

objective function in order to hit the global optimum must fail (Monte{Carlo search).

But by looking at organic evolution as a cumulative, highly parallel sieving process, the

results of which pass on slightly modi�ed into the next sieve, the amazing diversity and

e�ciency on earth no longer appears miraculous. When building a model, the point is to

isolate the main mechanisms which have led to today's world and which have been sub-

jected to evolution themselves. Inevitably, nature has come up with a mechanism allowing

individuals of one species to exchange parts of their genetic information (recombination

or crossing{over), thus being able to meet changing environmental conditions in a better

way.

Today, one may distinguish four types of evolutionary algorithms. For an introduction

and a comparison of the �rst three, see [2].

� evolution strategies

� evolutionary programming

� genetic algorithms

� genetic programming

This paper will focus on multimembered evolution strategies as proposed in [16, 17].
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2 The (� +; �) Evolution Strategy

Rechenberg and Schwefel [13, 16] developed the evolution strategies when they wanted to

optimize technical objects like e. g. a ashing nozzle. No closed form analytical objective

function was available, and hence, no applicable optimization method existed at that time.

Their �rst attempt to imitate principles of organic evolution on a computer still resembled

those iterative optimization methods known up to that time. In a two{membered or

(1 + 1) evolution strategy, one `parent' generates one o�spring per generation by applying

normally distributed mutations, i. e. smaller steps occur more likely than big jumps, until

a `child' performs better than its ancestor and takes its place. Because of this simple

structure, theoretical results for stepsize control and convergence velocity could be derived.

The ratio between successful and all mutations should come to 1=5. This �rst algorithm

has then been enhanced to a (� + 1) strategy which incorporated recombination for the

�rst time with several parents being available. The mutation scheme and the exogenous

stepsize control were taken across unchanged.

Schwefel [16, 17] generalized these strategies to the multimembered evolution strategy

now denoted by (� +; �) which imitates the following basic principles of organic evolution:

� population, leading to the possibility of

� recombination with random mating,

� mutation and

� selection

An `individual' consists of the following `genes' representing a point in the search

space:

x
i iσ

f (x)_

genotype

phenotype

Figure 3: Structure of an individual
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� Real{valued object variables xi have to be tuned by recombination and mutation in

such a way that an objective function reaches its global optimum. Referring to the

metaphor mentioned previously, the xi of Figure 3 represent the regulators of the

black box in Figure 1.

� Real{valued strategy variables or mean `stepsizes' �i determine the mutability of

the xi. They represent the standard deviation of a (0; �i) Gaussian distribution

being added to each xi as an undirected mutation. With an expectancy value of

0, the parents will produce o�springs similar to themselves on average. In order

to make a doubling and a halving of a stepsize equally probable, the �i mutate

log{normally distributed from generation to generation. These stepsizes hide the

internal `model' the population has made of its environment so far. In other words,

a self{adaptation of the stepsizes has taken over from the exogenous control of the

(1 + 1) strategy. This concept works because selection sooner or later prefers those

individuals having built a good model of the objective function, thus producing

better o�springs. Hence, learning takes place on two levels (see Figure 4).

� Depending on an individual's xi, the resulting objective function value f (~x) serves

as the `phenotype' (�tness) in the selection step. In a plus strategy, the � best of

all (�+ �) individuals survive to become the parents of the next generation. Using

the comma variant, selection takes place only among the � o�springs. The second

scheme is more realistic and therefore more successful, because no individual may

survive forever | which could at least theoretically occur using the plus variant.

Untypical for conventional optimization algorithms and lavish at �rst sight, a comma

strategy allowing intermediate deterioration performs better. Only by `forgetting'

individuals with a good phenotype, which may have been achieved with an internal

model being no longer appropriate for further progress, a permanent adaptation of

the stepsizes can take place and avoid long stagnation phases due to misadapted

stepsizes.

By choosing a certain ratio �=�, one can determine the convergence property of the

evolution strategy: If one wants a fast, but local convergence, one should choose a

small ratio (e. g. (5 ; 100)), but looking for the global optimum, one should favour

a `softer' selection (e. g. (15 ; 100)). Figure 4 displays the self{adapting capabilities

of di�erent evolution strategies under varying selection pressure. Using

f (~x) :=
30X
i=1

�
i � x2i

�
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as the objective function, n = 30 stepsizes have to adapt properly with respect to

each other in order to achieve maximum progress in adjusting the n = 30 xi on the

�rst level.
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Figure 4: Optimum selection pressure

Curve A in Figure 4 represents the performance of a strategy provided with perfect

`knowledge' about its environment (�i = c=
p
i), whereas in B, randomly chosen relations

of the �i were �xed. In curve C, the stepsizes could self{adapt by means of mutation

and recombination. Not surprisingly, � = 1 proved to be the best choice for A and B

where only one stepsize had to adapt, because all relations had been �xed. On the other

hand, one should choose � between 12 and 17 if one wants learning to take place (C).

Two observations from Figure 4 are remarkable: The (15 ; 100) strategy converges nearly

as fast as variant A, and it performs better than the (15 ; 100) strategy with perfect

knowledge. One can regard this phenomenon as a synergetic e�ect: 15 `fools' perform

better collectively than the same number of `specialists'.

Self{adaptation within evolution strategies depends on the following `agents' [18]:

� One cannot model mutation as a `pure' random process. This would imply a com-

plete independence of an o�spring from its parents.

� The population has to consist of a su�ciently large number of individuals. Not only

the `current best' should be allowed to reproduce, but a set of good individuals. Bi-

ologists have coined the term `requisite variety' being necessary to prevent a species

from becoming poorer and poorer genetically and eventually dying out.

� In order to exploit the e�ects of a population (� > 1), the individuals should re-

combine their knowledge with that of others (cooperate) because one cannot expect

the knowledge to accumulate in the best individual only.
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� In order to allow better internal models (stepsizes) to provide better progress in the

future, one should accept deterioration from one generation to the next. A limited

life{span in nature is not a sign of failure, but an important means of preventing a

species from `freezing' genetically.

Evolution strategies have proved to be successful when compared to other iterative

methods on a large number of test problems [16]. They are adaptable to nearly all sorts

of problems in optimization, because they need very little information about the prob-

lem | especially no derivatives of the objective function. For a list of more than 260

applications of evolutionary algorithms, see [1]. They are capable of solving high dimen-

sional, multimodal, nonlinear problems subject to linear and / or nonlinear constraints.

The objective function can also hide the result of a simulation, it does not have to be

given in a closed, analytical form. This also holds for the constraints which may rep-

resent the outcome of a �nite elements method (FEM). Evolution strategies have been

adapted to vector optimization problems [11], and they can also serve as a heuristic for

NP{complete problems like the travelling salesman problem or problems with a noisy or

changing response surface.

But apart from focusing on their problem solving capability, one may also concentrate

on the conditions under which self{adaptation takes place in evolution strategies. And

why not transfer these results | although originating from an ideal and arti�cial world

| to other, real{life domains?

3 Transferring the Observations To : : :

3.1 : : :Biology

Since evolution strategies rely on the collective learning paradigm of natural populations

introduced by Darwin and embedded in today's synthetic theory of evolution, using these

strategies as a model of biological processes seems obvious.

� As stated earlier, a limited life{span enables a species to cope with an environment

undergoing change. Accordingly, only a comma strategy allowing each parental

generation to reproduce exactly once is able to follow an optimum wandering over

time. Holding on to good, but outdated phenotypes the plus variant fails to perform

this task.
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� So far, evolution strategies only use haploid individuals, thus abandoning the e�ects

of dominance and recessivity. Diploid individuals are not worth the additional

computing time in an environment remaining stable over time, i. e. in the case of

one objective function. But when evolution strategies try to compute the Pareto set

of a vector optimization task, the selection step has to be modi�ed in such a way that

each of the k (> 1) objective functions becomes the selection criterion according to

a probability vector. From an individual's point of view, the environment changes

rather drastically which is why diploid individuals turn out to be necessary in the

multiple criteria case. And again, one can �nd a biological analogy: For certain

plants the relation

degree of polyploidy in percent = latitude

holds. Measuring time on a geological scale, in Greenland, the past{glacial environ-

ment may be regarded as relatively young compared to the environment in south of

Greece which has not changed during the last ice{age.

� The basic mechanisms of organic evolution have undergone an evolution themselves,

too. Nature has `invented' (sexual) recombination as a means of exchanging genetic

material between the individuals of one species in order to prevent parasites from

adapting to a certain genotype too well. In a di�cult topology, similar to the one

in Figure 2 (right), recombination also turns out to be crucial for �nding the global

optimum and not just a local one (convergence security):
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Figure 5: A (15 ; 100) strategy with and without recombination
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� Schwefel [15] developed a variant of evolution strategies being capable of solving

discrete (here: binary) problems by modelling somatic mutations. The observation

of an ambiguous relation between an individual's genotype and phenotype forms the

biological background of this idea. One may interpret and model this `disturbed'

relation as the result of errors happening during ontogenesis. If this hypothesis

of a connection between the genetic mutation rate and the somatic error rate is

correct, this model may help to explain the non{genetic variance of morphological

attributes (e. g. body length, tail length, weight, : : : ) observed within populations

of genetically identical mammals.

Again, within the algorithm, learning takes place on two levels. On the �rst level,

100 bits have to set correctly. This is achieved by attaching to each bit its private

mutation probability. For those bits which have already been set correctly, this rate

remains near its starting value (� 10�6), whereas the wrong bits have to increase

their mutability to such a value (� 10�2) that the desired mutation �nally occurs.

Afterwards, this value has to decrease again in order to prevent the correct bit from

ipping once more. In contrast to the previous one, Figure 6 now demonstrates the

inuence of recombination on convergence velocity:
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Figure 6: A modi�ed (15 ; 100) strategy using di�erent types of recombination

Setting all mutation probabilities to 10�6, one can expect to perform � 1:800:000

trials until the last three bits have been set correctly preserving the correct bits.
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The modi�ed evolution strategy only needs � 9:000 mutations using recombination,

thus emphasizing again that one cannot regard nature as a pure random walk.

3.2 : : :Organizational Psychology

Darwin's basic assumption that organisms can only survive if they perform some sort

of adaptation within their environment has inspired psychologists who study the organi-

zational structure of companies. Why should one organizational structure that handles

various situations be su�cient? After all, di�erent environments require di�erent, spe-

cially adapted structures. This rather situational or contingency approach has empirically

found out that bureaucratic organizations most easily prosper in stationary or settled

surroundings. But dynamical environments demand for the internal adaptability of so{

called organic organizations relying on well{educated and autonomous, self{supporting

members. In this context, knowledge can be regarded as a social product enabled by and

permanently expanded and corrected by an exchange of ideas. If practical problems go

beyond the limits of one scienti�c discipline, one does not necessarily need inventions.

The required knowledge often already exists, but the respective `owners' fail to discover

its relevance within the given problem's frame of reference.

In evolution strategies, the recombination operator `exchanges ideas' | the existing

knowledge hidden in the stepsizes. As stated earlier, abandoning recombination (cooper-

ation) when solving a simple problem only leads to a loss of e�ciency (see Figure 6), but

facing a di�cult task the solution yielded will be far from the global optimum (see Figure

5).

There are hints that, under certain, but rare conditions, the formation of a group

adapts to the task's complexity. In the case of simple problems, centralized network

structures develop, whereas complex tasks lead to decentralized structures. Within exist-

ing organizations, formal hierarchies normally prevent this process.

The design of a meta{evolution strategy capable of adapting population size, selection

pressure and recombination type is currently under development. This algorithm should

con�rm the following result. In a symmetric, smooth and simple world like the one in

Figure 2 (left), a (1 ; 100) strategy with only one stepsize for all xi performs far better

than a (15 ; 100) strategy with 30 stepsizes which in turn is more appropriate in di�cult,

multimodal environments:
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Figure 7: A (1 ; 100) versus a (15 ; 100) strategy competing in the topologies of Figure 2, n = 30

The notions `lean management' and `lean production' may also �t into the frame

of this section. They have originated from a 1990 MIT study which tried to convey a

Japanese concept | known as the Toyota production system since 1973 already | to

the U.S. car industry. Often, `lean' is being misunderstood nowadays as a justi�cation

of dismissals. Doing so can reduce the unspeci�c | in an economic sense: unnecessary

| resources or the requisite variety in such a way that a change in the outside world

becomes more di�cult to cope with. But with the true background being the idea of

a lean organization, one should concentrate on integrating those activities that are not

directly involved in the production process, like e. g. surveillance, quality control and

maintenance. Shifting these functions to the worker the enhanced responsibility leads

to a more interesting job, thus establishing a feedback loop between a worker's creative

abilities and his/her own working conditions. Additionally, regular discussions (`quality

circles') held across several hierarchical layers promote the distribution of knowledge.

3.3 : : :Economics

The main principle of synergetics consists in explaining an observable order from within

the system or endogenously. In economics, the invisible hand (Adam Smith) already con-

veyed the idea of self{organizing markets in order to explain how individual decisions lead

to the formation of structures. With this idea serving as a descriptive `theory' only, the

scienti�c interest shifted towards the analysis of market equilibria using the laws of me-

chanics. Nowadays, evolutionary economics no longer examines the process of converging

towards an equilibrium but rather concentrates on the formation and di�usion of innova-

tions. Furthermore, time has become irreversible. One has to take into consideration the

history of an economic process when explaining its further development.
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With concepts like the `bounded rationality' trying to overcome the idealistic assump-

tion of an agent's intentional behaviour, why not model individuals stochastically in order

to capture the variety of behavioural norms? With a selection step present (externalities)

a long-term macroscopic order may emerge which in turn e�ects or even `enslaves' the

`fast' variables on the lower level. A market can remain stable for a certain time, but when

approaching one of this stable `island's' borders, already small variations can lead to a

new state of order (bifurcation or path{dependencies, lock{in e�ects). The victory of the

VHS video system over the Beta video system, which was said to be superior technically,

depended on a small majority of people preferring VHS in the beginning [5]. Externalities

have a strong inuence in this example. The more widespread one system is, the better

the support from the complementary good markets. Consequently, the decision depends

on the perception of the number of systems already sold and the expected utility assigned

to it.

Figure 8 displays the performance of an evolution strategy under high selective pres-

sure. One can observe phases of stagnation and phases of rapid change emerging endoge-

nously | a phenomenon biologists refer to as `punctuated equilibria' [7, 8].
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Figure 8: A (4 ; 40) strategy adjusting 30 parameters

Maybe, unwanted discontinuities can be overcome by a closer `cooperation' between

economies, too. And maybe, a sustainable growth can only be achieved in this way |
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if it exists at all. The last worldwide stock market crash (without any serious economic

foundation) has demonstrated how sensitively markets with sel�sh, maximizing agents,

rigid rules and a deceptive security respond to small disturbances. But if the assumption

of continuity does not hold [3], maybe recessive phases help to `forget' traditional tech-

nologies, �rms and institutions, thus releasing niches for the entry of innovative elements.

This leads to an enhanced diversity resulting in a more robust economy [9].

The assumption of a nonlinear world surrounding us bears consequences. For we do

not know exactly what we are doing when interfering with any kind of system comprising

nonlinearities. Even the best intentions can lead to unbounded consequences.
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