
EVOLUTIONARY ALGORITHMS FOR FUZZY LOGIC:

A BRIEF OVERVIEW

Thomas B�ACK, Frank KURSAWE

University of Dortmund, Department of Computer Science, LS XI

D{44221 Dortmund, Germany

fbaeck,kursaweg@LS11.informatik.uni-dortmund.de

ABSTRACT

Evolutionary algorithms are direct, global optimization algorithms gleaned from the model
of organic evolution. The most important representatives, genetic algorithms and evolution

strategies, are brie
y introduced and compared in this paper, and their major di�erences
are clari�ed. Furthermore, the paper summarizes the application possibilities of evolutionary
algorithms in the design of fuzzy logic controllers. The optimization of fuzzy membership
functions turns out to be a promising and successful application domain for evolutionary
algorithms, while the automatic learning of fuzzy control rules by means of fuzzy classi�er

systems is still in an early stage of research.

1 Evolutionary Algorithms

Evolutionary algorithms are a class of direct, probabilistic search and optimization meth-
ods based on the model of organic evolution (where they also borrow most of the terminology
from). The algorithms exploit the collective learning process within a population of individu-
als, and each of the individuals represents a search point in the space of potential solutions to
a given problem. The start population (which is often randomly initialized) evolves towards
increasingly better regions of the search space by means of randomized processes of selection,
mutation, and recombination. The selection operator favours individuals of higher �tness
(quality in terms of the objective function f : M ! IR which characterizes the optimization
problem) to reproduce more often than individuals of lower �tness. Recombination allows for
the exchange of information (partial solutions) between individuals, and mutation introduces
innovation into the population.

Using this high level of abstraction, we can formulate a general basic algorithm which
subsumes the existing evolutionary algorithms. In the following, t denotes a generation (it-
eration) counter and P (t) 2 I� is a population of � individuals at generation t. I denotes
the space of individuals and is not necessarily identical to the optimization problem's search
space M because individuals may carry additional information. P 0(t) 2 I� and P 00(t) 2 I� are
used to indicate intermediate populations of size � (� = � is possible). Furthermore, we use
Q 2 fP (t); ;g to denote a set of individuals which might be taken into account by selection in
addition to the intermediate population P 00(t). The resulting evolutionary algorithm consists
of a simple loop of recombination, mutation, �tness evaluation, and selection which is iterated
until a speci�c termination criterion is ful�lled:

Algorithm 1 (Basic evolutionary algorithm)

t := 0;
initialize P (t) 2 I�;
evaluate P (t);
while not terminate(P (t)) do

recombine:P 0(t) := r(P (t));
mutate: P 00(t) := m(P 0(t));
evaluate P 00(t) 2 I�;
select : P (t+ 1) := s(P 00(t) [Q);
t := t+ 1;

od

return(best individual in P (t));

The currently most important and widely known concrete representatives of this general
outline are genetic algorithms (GAs) [10, 12, 8], evolution strategies (ESs) [21, 22, 23], and
evolutionary programming (EP) [7, 5, 6]. In the following, we restrict the presentation to a
short overview of GAs and ESs (modern variants of EP are quite similar to ESs) to clarify
the most important characteristics and di�erences of both approaches. The interested reader
is referred to the original literature or the more detailed overview given in [2].

1.1 Genetic Algorithms

In traditional genetic algorithms, individuals are always represented by binary vectors
~a 2 IBl (IB = f0; 1g) of �xed length l. The reasons for this choice are both of historical
and theoretical nature (the theory of genetic algorithms is based on the analysis of so-called
schemata | similarity templates representing hyperspaces of IBl | and schema processing
properties of the algorithm; see [8] for more details). In case of optimization problems which
are not formalizable as functions f : IBl ! IR, a coding mechanism is utilized to represent
the search space of the optimization problem by binary vectors (�nding such a code is often a
di�cult task, such that some recent applications of \genetic algorithms" are based on a combi-
nation of direct representations of candidate solutions and problem-speci�c genetic operators;
see e.g. [18]).

Genetic algorithms put a strong emphasis on the recombination (crossover) operator as
the main search operator. In its simplest form, crossover exchanges all bits to the right of a
randomly chosen position between two individuals [10]. This one-point crossover can naturally
be extended by sampling more than one breakpoint and alternately exchanging each second
of the resulting segments [12]. In the extreme case of uniform crossover , a random decision
whether to exchange it or not is made for each bit position of the individuals [26]. Besides the
number of crossover points, the operator is characterized by the crossover probability pc which
denotes the probability per individual to undergo recombination (often, pc � 0:6 is chosen)

The role of mutation is normally interpreted to be only of marginal importance in GAs
(a \background" operator [10]). It works by occasionally inverting single bits of individuals
with an extremely small probability pm (e.g., pm � 0:001 [12]). Recent investigations, however,
clarify that the importance of mutation was so far underestimated and a more recommendable
setting is given by pm = 1=l [19, 1].

Selection in genetic algorithms is a probabilistic operator which works by copying individ-
uals from P 00(t) (Q = ;) into the new parent population P (t+ 1). Each individuals' selection

probability (the probability to be copied) is given by the proportion of its �tness from the
total population �tness (proportional selection):

p(~ai) =
f(~ai)P�
j=1 f(~aj)

:

Notice that this de�nition assumes positive �tness values and a maximization task; other-
wise, so-called scaling mechanisms have to be used in combination with proportional selection
[8].

Genetic algorithms always maintain a constant population size (i.e., � = �) which is of
the order of 50{100 individuals. Normally, the start population is randomly initialized (with
probability 0:5 for a one respectively a zero bit) and the algorithm is terminated after a
prede�ned number of generations has passed.

1.2 Evolution Strategies

Initially developed for experimental optimization purposes [21], evolution strategies are
nowadays important computer algorithms for continuous parameter optimization problems
f : IRn ! IR [22, 23]. In contrast to genetic algorithms, candidate solutions are directly
represented by real-valued vectors ~x 2 IRn, and individuals ~a = (~x; ~�) consist not only of
the vector ~x, but also incorporate an additional, n-dimensional vector ~� 2 IRn

+
of positive

standard deviations �i. These strategy parameters �i are utilized by the mutation operator to
modify the corresponding object variables xi (i 2 f1; : : : ; ng).

Mutation works for each of the object variables xi by adding normally distributed random
numbers with expectation zero and variance �2i (indicated by the notation N(0; �2i)). The
standard deviations �i are neither constant nor explicitly controlled, but they also undergo a
logarithmic-normally distributed variation mechanism:

�0

i = �i � exp (� 0 �N(0; 1) + � �Ni(0; 1)) ;

x0

i = xi + �0

i �Ni(0; 1) :

The mutation of �i is based on a global factor � 0 �N(0; 1) (the random number is sampled
only once for the complete individual) and a local factor � � Ni(0; 1) (the random number
is sampled anew for each component). Schwefel recommends the settings � 0 � 1=

p
2n and

� � 1=
q
2
p
n for the \learning rates" � 0 and � [22].

It is important to see that selection works implicitly on the strategy parameters ~� by ex-
ploiting the link between advantageous changes of object variables (i.e., a large improvement
of �tness) and useful standard deviations (i.e., appropriate internal models of the objective
function topology). This mechanism of self-adaptation of strategy parameters allows for an
adaptation of these parameters without the need for �nding an appropriate exogenous control
mechanism [24, 9]. Besides the standard deviations up to n � (n� 1)=2 covariances of the gen-
eralized n-dimensional normal distribution may also be taken into account for self-adaptation,
which introduces linear correlated mutations to the algorithm. This mechanism is able to
accelerate the search in case of a complicated local topology [23].

While mutation is the most important search operator in evolution strategies, recombina-
tion on strategy parameters and object variables is necessary for the self-adaptation process

and often helpful for the progress of the search. Normally, an intermediate recombination

operator is recommended for strategy parameters, i.e. a strategy parameter of an o�spring
individual results from taking the average of the corresponding strategy parameters of both
parents. In case of the object variables, a discrete recombination operator where each xi is
randomly copied from either the �rst or the second parent (in analogy with uniform crossover
in genetic algorithms) is normally preferred. The most appropriate choice, however, clearly
depends on the particular objective function topology.

A further, secondary function of recombination in evolution strategies consists in changing
the population size from � to � individuals (a setting of � = 15, � = 100) is quite normal).
This works by repeating the application of recombination on the level of individuals � times
(in contrast to genetic algorithms, recombination in evolution strategies is always applied, i.e.,
no parameter comparable with the crossover rate exists in ESs).

Finally, the selection operator in evolution strategies is completely deterministic and works
by choosing the � best individuals out of P 00(t) (Q = ;, (�,�)-selection) respectively out of
P 00(t) [P (t) (Q = P (t), (�+�)-selection) to become parents of the next generation. The
(�,�)-selection is preferred in modern implementations of the ES, because it supports the
self-adaptation mechanism (by providing the possibility to become extinct for inappropriate
strategy parameter settings) and allows for an application of evolution strategies in case of
time-varying or perturbed objective functions.

Since self-adaptation of strategy parameters is certainly the most distinguishing (and com-
plicated) feature of ESs, we summarize the criteria which were identi�ed by Schwefel to be
critical for a successful self-adaptation mechanism [25]: A (�,�)-strategy should be used, with
a not too small value of � (i.e., the selective pressure should not be too strong), e.g., a
(15,100)-strategy, and the recombination operator should be applied also on strategy param-
eters (especially intermediate recombination).

1.3 A Summary of Di�erences

Although, at �rst glance, the representation of individuals seems to be the distinguish-
ing property of genetic algorithms and evolution strategies, the self-adaptation concept of
strategy parameters | which is completely missing in genetic algorithms | is of much more
importance. The process of tuning strategy parameters \by hand" for a particular application
problem, which is often a time-consuming problem in applying a genetic algorithm, is not
required for evolution strategies. Concerning the genetic operators, the roles of mutation in
evolution strategies respectively recombination in genetic algorithms re
ect an emphasis on
di�erent operators which might be explained by a phenotypical level of modeling in case of
ESs and a genotypical level in case of GAs. Finally, the selection operators are characterized
by deterministic, rank-based survival of the top group in evolution strategies versus a prob-
abilistic mechanism with nonzero chances of survival even for the worst individuals in case
of genetic algorithms. Currently, much of the theoretical basis to understand the pros and
cons of these di�erent principles of representations and operators is still missing and subject
to active research.

2 Evolutionary Algorithms for Fuzzy Logic

The application possibilities for evolutionary algorithms in the �eld of fuzzy logic are
documented by a number of recent research publications, which can roughly be divide into
two groups:

� Optimization of the membership functions of fuzzy sets.

� Automatic learning of fuzzy rules.

In the following, we will brie
y discuss the general idea for both topics and refer the
interested reader to the literature cited for more details on the applications and fuzzy logic in
general (see [15, 16]).

2.1 Optimization of Membership Functions

Fuzzy membership functions provide the characterization of fuzzy sets by establishing a
connection between linguistic terms (such as \slow", \medium", \fast" for a speed variable)
and precise numerical values of variables in a physical system. A fuzzy membership function
approximates the con�dence with which a numerical value is described by a linguistic term.
A typical example of triangular fuzzy membership functions for a speed variable is given in
�gure 1.

Figure 1: Membership functions for a physical variable \speed".

Notice that membership functions not necessarily have to be (isosceles) triangles as in this
example. For instance, Gaussian membership functions

u(x) = exp

 �(x� c)2

2�2

!

provide an important alternative (e.g., see [13, 15, 29]). A further possibility for the shape
of membership functions is to choose trapezoidals [14].

The correct choice of the membership functions, however, is by no means trivial but plays
a crucial role in the success of an application. Several example applications demonstrate that
evolutionary algorithms are capable of optimizing the membership functions of fuzzy logic
controllers. The basic idea is to represent the complete set of membership functions by an

individual and to evolve shape and location of the triangles (respectively the Gaussian curves).
Each triangle may be described by its anchor points on the abscissa axis, and the Gaussian
membership functions are characterized by c and �.

Karr describes an application to the cart-pole balancing system and uses a genetic algo-
rithm to evolve the membership functions of a fuzzy controller [13]. In order to evaluate the
�tness of a controller, the system is simulated for a �xed simulation time, repeating the simu-
lation four times for di�erent initial conditions. The resulting, optimized fuzzy logic controller
turns out to perform by far better than the controller based on membership functions designed
by a human expert. Moreover, Karr also demonstrates that the genetic algorithm approach
can be used successfully when the membership functions have to be altered in real time due
to a variation of the cart mass (the expert-designed controller failed totally in this case) [13].
These promising results were recently con�rmed by an application of the method for the online
control of a laboratory pH system with drastically changing system characteristics [14].

Of course, rather than using a binary encoding of continuous parameters which characterize
membership functions and a genetic algorithm, one might prefer an evolution strategy to
optimize the membership functions. Wienholdt reports good results from an application of
ESs to optimize radial basis function (RBFs | Gaussian membership functions) networks for
time series prediction [29].

We conclude this section by referring to a problem which may arise from unconstrained
variations of the membership function shape by the optimization algorithm: The completeness
property, which requires that a fuzzy logic controller always be able to infer a control action
for every state of the process (see [15]) might be violated if the anchor points of membership
functions are shifted such that the possible range of values is no longer completely covered.
In order to solve this problem, one might consider to introduce special constraints to the
evolutionary algorithms' objective function.

2.2 Fuzzy Classi�er Systems

Besides learning the membership functions, an even more challenging problem consists in
the automatic learning of fuzzy control rules, i.e., the linguistic statements which are normally
derived from expert knowledge [15]. This idea comes close to so-called classi�er systems [4],
rule-based systems which use a genetic algorithm as a rule-generation mechanism, such that
the classi�er system is capable of inductive learning [11]. Valenzuela-Rend�on presented an
extension of classi�er systems which allows for the learning of fuzzy rules by incorporating
fuzzy�cation and defuzzy�cation components as well as a fuzzy rule matching mechanism
[27, 28]. Although the �rst application examples (the imitation of static linear respectively
quadratic one-input one-output systems) are very simple, the approach may indicate a path
towards automatic learning of fuzzy control rules. A promising further step into this direction
was recently presented by Parodi and Bonelli, who extended Valenzuela-Rend�on's approach by
a mechanism which allows learning of fuzzy rules, membership functions, and output weights
representing the relative importance of the fuzzy rules at the same time [20].

3 Conclusions

Evolutionary algorithms clearly represent a successful approach towards the optimization
of fuzzy membership functions, and we expect this �eld of applications to grow remarkably
in the near future. Of course, the method is only applicable if the quality function of the
resulting fuzzy controller can be evaluated numerically without taking too much time, because

evolutionary algorithms typically require the evaluation of a large number of individuals.
On the other hand, the global search characteristics of these algorithms yield membership
functions of surprisingly high quality in comparison with those de�ned by human experts.

Research concerning the automatic learning of fuzzy control rules by means of evolutionary
algorithms respectively classi�er systems is surely in its initial stage and much work remains
to be done. Nevertheless, we are sure that this line of research should also be followed, because
an automatic tool for this time-consuming task is highly desirable.

The development and optimization of fuzzy controllers are important topics for further
research where evolutionary algorithms will surely prove to be very helpful.

References

[1] Th. B�ack (1992) The interaction of mutation rate, selection, and self-adaptation within
a genetic algorithm, In: M�anner and Manderick [17], p. 85{94.

[2] Th. B�ack and H.-P. Schwefel (1993) An overview of evolutionary algorithms for parameter
optimization, Evolutionary Computation, 1(1):1{23.

[3] R. K. Belew and L. B. Booker (Eds.) (1991) Proceedings of the 4th International Confer-

ence on Genetic Algorithms, Morgan Kaufmann Publishers, San Mateo, CA.

[4] L. B. Booker, D. E. Goldberg, and J. H. Holland (1989) Classi�er systems and genetic
algorithms, In: J. G. Carbonell (Ed.), Machine Learning: Paradigms and Methods, The
MIT Press / Elsevier, p. 235{282.

[5] D. B. Fogel (1991) System Identi�cation through Simulated Evolution: A Machine Learn-

ing Approach to Modeling, Ginn Press, Needham Heights.

[6] D. B. Fogel (1992) Evolving Arti�cial Intelligence, PhD thesis, University of California,
San Diego, CA.

[7] L. J. Fogel, A. J. Owens, and M. J. Walsh (1966) Arti�cial Intelligence through Simulated
Evolution, Wiley, New York.

[8] D. E. Goldberg (1989) Genetic algorithms in search, optimization and machine learning,
Addison Wesley, Reading, MA.

[9] F. Ho�meister and Th. B�ack (1992) Genetic self{learning, In: F. J. Varela and P.
Bourgine (Eds.), Proceedings of the First European Conference on Arti�cial Life, The
MIT Press, Cambridge, MA, p. 227{235.

[10] J. H. Holland (1975) Adaptation in natural and arti�cial systems, The University of
Michigan Press, Ann Arbor, MI.

[11] J. H. Holland, K. J. Holyoak, R. E. Nisbett, and P. R. Thagard (1986) Induction:

Processes of Inference, Learning, and Discovery, MIT Press.

[12] K. A. De Jong (1975) An analysis of the behaviour of a class of genetic adaptive systems,
PhD thesis, University of Michigan. Diss. Abstr. Int. 36(10), 5140B, UniversityMicro�lms
No. 76{9381.

[13] C. L. Karr (1991) Design of an adaptive fuzzy logic controller using a genetic algorithm,
In: Belew and Booker [3], p. 450{457.

[14] C. L. Karr and E. J. Gentry (1993) Fuzzy control of pH using genetic algorithms, IEEE
Transactions on Fuzzy Systems, 1(1):46{53.

[15] C. C. Lee (1990) Fuzzy logic in control systems: Fuzzy logic controller | Part I, IEEE
Transactions on Systems, Man, and Cybernetics, 20(2):404{418.

[16] C. C. Lee (1990) Fuzzy logic in control systems: Fuzzy logic controller | Part II, IEEE
Transactions on Systems, Man, and Cybernetics, 20(2):419{435.

[17] R. M�anner and B. Manderick (Eds.) (1992) Parallel Problem Solving from Nature 2.
Elsevier, Amsterdam.

[18] Z. Michalewicz (1992) Genetic Algorithms + Data Structures = Evolution Programs,
Arti�cial Intelligence, Springer, Berlin.

[19] H. M�uhlenbein (1992) How genetic algorithms really work: I. mutation and hillclimbing,
In: M�anner and Manderick [17], p. 15{25.

[20] A. Parodi and P. Bonelli (1993) A new approach to fuzzy classi�er systems, In: S. Forrest
(Ed.), Proceedings of the 5th International Conference on Genetic Algorithms, Morgan
Kaufmann Publishers, San Mateo, CA, p. 223{230.

[21] I. Rechenberg (1973) Evolutionsstrategie: Optimierung technischer Systeme nach Prinzi-

pien der biologischen Evolution, Frommann{Holzboog, Stuttgart.

[22] H.-P. Schwefel (1977) Numerische Optimierung von Computer-Modellen mittels der Evo-

lutionsstrategie, volume 26 of Interdisciplinary Systems Research, Birkh�auser, Basel.

[23] H.-P. Schwefel (1981) Numerical Optimization of Computer Models, Wiley, Chichester.

[24] H.-P. Schwefel (1987) Collective phenomena in evolutionary systems, In: Preprints of the
31st Annual Meeting of the International Society for General System Research, Budapest,
volume 2, p. 1025{1033.

[25] H.-P. Schwefel (1990) Systems analysis, systems design, and evolutionary strategies,
Syst. Anal. Model. Simul., 7(11/12):853{864.

[26] G. Syswerda (1989) Uniform crossover in genetic algorithms, In: J. D. Scha�er (Ed.), Pro-
ceedings of the 3rd International Conference on Genetic Algorithms, Morgan Kaufmann
Publishers, San Mateo, CA, p. 2{9.

[27] M. Valenzuela-Rend�on (1991) The fuzzy classi�er system: A classi�er system for contin-
uously varying variables, In Belew and Booker [3], p. 346{353.

[28] M. Valenzuela-Rend�on (1991) The fuzzy classi�er system: Motivations and �rst re-
sults, In: H.-P. Schwefel and R. M�anner (Eds.), Parallel Problem Solving from Nature

| Proceedings 1st Workshop PPSN I, volume 496 of Lecture Notes in Computer Science,
Springer, Berlin, p. 338{342.

[29] W. Wienholt (1993) Optimizing the structure of radial basis function networks by op-
timizing fuzzy inference systems with evolution strategy, Internal Report IR-INI 93-07,
Institut f�ur Neuroinformatik, Ruhr-Universit�at Bochum.

