
On Natural Life's Tricks to Survive and Evolve

Hans{Paul Schwefel and Frank Kursawe

University of Dortmund

D{44221 Dortmund, Germany

E-mail: fschwefel,kursaweg@LS11.cs.uni-dortmund.de

Abstract| Which are the fundamental principles of life?
This is the main question to be addressed if one tries to

create arti�cial life on computers. Though it has been an-
swered only partially, evolutionary algorithms are substan-
tially contributing already to many kinds of human problem
solving by means of virtual organisms. Besides looking back
on that success story and extrapolating it a bit into the fu-
ture { both endeavors obviously being subjective {, a new

result will be presented in the following showing the impor-
tance of multicellularity, which helps to self-adapt the error
rates of the replication step to what is needed for e�cacious
and e�cient optimum seeking without individual learning.

Keywords| evolutionary computation, evolutionary algo-
rithms, imitating life, natural computation, binary optimiza-
tion, evolution strategies, self-adaptive mutabilities, multi-
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I. Overview

E�orts to model, algorithmically, the basic evolutionary
principles population, self-replication, variation, and selec-

tion have been traced back to the 1950s in the Handbook of
Evolutionary Computation[1]. They are part of what has
been called biologically inspired or natural computation (see
Schwefel[2]).
Currently, three vital schools from the initial phase of

Evolutionary Computation (EC) can be distinguished:

� Evolutionary Programming (EP), �rst roots of which
were laid by Lawrence Fogel[3] and which was redesigned
by David Fogel[4] to its current form;
� Genetic Algorithms (GA), which Holland[5] used to ex-
plain the adaptive behavior of basic life forms, but later
have become better known as tool for solving (mostly com-
binatorial) optimization tasks (see Goldberg[6]);
� Evolution Strategies (ES), developed by Rechenberg[7]
and Schwefel[8], �rst as a rule set for experimental, later
as algorithms for numerical optimization.

Genetic Programming (GP)[9] and Learning Classi�er Sys-

tems (LCS) have branched from the GA philosophy. The
former is a separate school now, the latter seems to wait
for new ideas to develop further.
Though `religious' wars about the `proper' modeling of

evolutionary processes are melting down { many hybrid
Evolutionary Algorithms (EA) are currently in use and un-
der analytic investigation { the three schools mentioned
above have retained some of their initial speci�cs.
In Section II we briey look at the success story of all EA

and at the di�erences they maintain in modeling organic
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evolution. There are two aspects of that modeling process:
On the one hand, there is the desire to make use of life's
tricks for solving di�cult technical or managerial problems;
on the other hand, doing so successfully, one hopes to gain
some insight into why nature has gone the way it obviously
did. Section III tries to summarize our point of view of
what we have learned during the modeling process. This
part of the paper may be a bit provocative. Then it serves
its goal to enhance the search for better models.

We are then going to employ one of nature's tricks for
maintaining life and striving for higher and higher forms
despite of the entropy law and (often self-induced) degrad-
ing environments including catastrophes in Section IV. The
case we handle is multicellularity and somatic mutations.
Mimicking the cell divisions during ontogeny, we found a
way to adjust single mutation rates for many genes even
in epistatic binary optimization. Section V is a wanted for
speculation into the next decade, which, of course, may be
completely wrong. We would like to call it wishful thinking,
hoping that it contains some self-ful�lling prophecy.

II. Introduction

After more than twenty years of sporadic publications
{ Alander[10] counted 99 publications before 1980 { the
GA community invited to the �rst International Confer-

ence on Genetic Algorithms (ICGA) in 1985. Since that
time the group has maintained its conferences in the U.S.A.
every second year. Five years later, a couple of Euro-
pean researchers in the �eld of ES, GA, and other ap-
proaches gleaned from natural processes started another
biennial conference series Parallel Problem Solving from

Nature (PPSN) with a broader scope of topics from `im-
itating life'. The Evolutionary Programming Society at
San Diego started Annual Meetings of the EP Society in
1992, the IEEE Neural Network Council annual Interna-
tional Conferences on Evolutionary Computation (ICEC)
in 1994.

At the time being we count more than twenty interna-
tional events per year in closely related �elds[2], at least
half a dozen corresponding journals, and more than 1000
papers published per year[10]. There are countless success-
ful applications in many di�erent �elds, where EA have
proven capable of solving hard design, management and
planning, as well as control problems.

Why did it take the basic ideas so long to become broadly
accepted? The following remarks are limited to certain
perspectives. Let us try to paraphrase them briey:

� The basic ideas were ingenious, though aiming at an-



swering di�erent questions and/or solving di�erent kinds of
problems in di�erent environments. But the three schools
mentioned above, being unaware of each other in the be-
ginning, acted separately until about 1990.
� The numeric power of computers has been increased by
several powers of ten within those thirty plus years, thus
enabling the simulation of many generations and large pop-
ulations, now, but not much earlier.
� All achievements in the world of crisp computing (see
Zadeh's work[11] on fuzzy sets for the dichotomy crisp ver-
sus soft computing), have not yet lived up to the aspirations
provided at the beginning. Subsymbolic information pro-
cessing seems to have merits as well as symbolic knowledge
processing.
� Even ad-hoc adaptations of evolutionary algorithms to
speci�c di�cult decision making problems have proven to
yield results not achievable with classical problem solving
approaches.
� A thorough theory of EC is still missing, despite hun-
dreds of articles on theoretical investigations with very lim-
ited scope.
� Too many researchers in the �eld are clinging too closely
to their origins (either EP, GA, or ES) and have lost con-
nection to the dual view that `imitating life' is a means of
creating e�ective and e�cient problem solving procedures
as well as a means of better understanding natural life.

Many people looking for the �rst time onto detailed de-
scriptions of di�erent incarnations of EA, e.g. GA and ES,
wonder why the operators for GA are usually presented
in the sequence SRM (selection, recombination, mutation),
whereas for ES the sequence RMS is mostly used. It has
been tried to remove that discrepancy by saying that this
is a question of the entry into the iterative loop, but that
the loop itself is the same. This is not fully convincing,
however. That is why a di�erent type of loop, valid for all
types of EA, is presented in Fig. 1.

evaluate

initialize population

select mating partners

recombine

mutate

evaluate

select

(terminate)

loop

Fig. 1. The basic loop of all EA.

All special incarnations now omit one or the other step

within the generational loop. The following statements re-
fer to `canonical' versions of the algorithms and to not take
account of the full variety existing or proposed.
EP obviously omits recombination since its philosophy

relies on species as evolving entities, and per de�nition,
species do not interchange genetic information (at least no
`higher' species). Thus, there is no mating selection and
no crossover as to be found in the GA realm. Within
GA, crossover is the basic variation mechanism, whereas
mutation is subsidiary or even omitted. They let all de-
scendants reach adulthood, where they enter the mating
selection with �tness-dependent probability. The number
of descendants created is never larger than the number of
parents was.
ES, on the contrary, generate a birth surplus. Environ-

mental selection after birth and before reproduction cuts
the population down to a constant size of parents enter-
ing the next iteration. Mating is uniformly random, thus
not selective, in ES. Whereas in non-elitist ES and GA no
descendant struggles against his parents for survival, this
is the normal case within canonical EP. Repeated tourna-
ments halve the whole population of old species and equally
many new species.
Isn't it astonishing that no rigorous examination of the

bene�ts and shortcomings of these selection types modeled
so di�erently exists? Blickle's[12] investigation of di�erent
selection operators alone fades out the other operators for
variation, but only their interplay may yield a thorough
understanding of evolutionary processes as a whole.
It has often wrongly been stated that ES are only good

for real valued variables, GA for binary or integer ones.
But currently, there are real-valued GA[13], and at the
very beginning of the ES history the variables within ex-
perimental settings were discrete, not continuous. In this
paper, we even show a case of binary variables solved by
means of an otherwise standard ES.

III. Some Lessons Learned from Modeling

Evolution

The exploration and exploitation schemes used in con-
temporary EA are still quite simple models of real life,
taking into account just some basic features of very sim-
ple organisms[14]. Nevertheless, their use and analysis has
told us some lessons already. We admit that the following
remarks are essentially subjective.

A. Birth and Death; No Individual Immortality

Perhaps the most important distinction between living
and non-living entities is that the latter just decay over
time, due to the law of entropy, whereas the former {
as a whole { buy endurance, adaptivity to changing en-
vironments (even if self-induced), and emergence of ever
higher complexity by short-living of single individuals. Not
only individuals and populations, even species and higher
taxa, are mortal. Even within individual living beings, the
number of cell divisions seems to be limited by genetically
controlled mechanisms. In case of drastic environmental
changes one has found that species with a shorter genera-



tional cycle of birth, reproduction, and death, are capable
of adapting faster. Of course, there are other `natural'
tricks to deal with such situations { additionally, e.g. poly-
ploidy and epigenesis.
Individual mortality seems to be a necessary ingredi-

ent of e�ective self-adaptation of internal strategy param-
eters[15]. The principle of forgetting good intermediate so-
lutions with positive probability is essential for simulated

annealing, as well. Moreover, it helps in hunting dynamic
minimizers in control problems, a situation in which an
elitist EA, eagerly conserving already achieved improve-
ments (e.g. so-called plus-versions of ES) loses adaptiv-
ity[16], though theoretically, its global convergence can be
proven under more general conditions than that of a non-
elitist EA[17]. The latter are in danger of divergence if they
are parameterized improperly.

B. Knowledge Propagation; No Prediction

Nature's trick to preserve acquired knowledge to some
extent may be seen in storing individuals' blue prints within
the genome and proliferating just this bootstrap program
for a highly nonlinear self-organizing process. No long-term
memory, no analysis of the history, and no prediction of the
future are involved. The information processing from one
generation to the next works like a simple Markov chain.
The knowledge processed is just a recipe that has been suc-
cessful to survive the time from inception to reproduction.
In eukaryotes the nucleus is just one part of the repro-

duction machinery. Other organelles are responsible for the
interpretation of the program and for carrying on the build-
ing blocks to construct proteins and enzymes. The genome
contains both functions for the proteins building up the
phenotype and functions for the enzymes controlling the
processes involved.
The genetic code, now equal for nearly all forms of life,

plays an important role during the creation of each individ-
ual cell. It must have been developed in the early stages
of life. Altering it now within highly sophisticated, well
adapted situations, is nearly always lethal. Thus, it can be
explained why the genetic code may not have reached an
`optimal' state with respect to the e�ciency of the search
for improvements[7]. But, there are more steps beyond the
�rst translation from RNA/DNA to amino acids until a
living being is born. Though they are not yet completely
understood, it seems that altogether strong causality is
achieved in most cases, i.e. small changes in the genome
normally yield small changes in the phenotype. This helps
to circumvent Hamming cli�s and makes the �tness land-
scape smooth enough for e�cient adaptation/amelioration.

C. Error Reduction; No Precision

Reproduction by copying useful information from indi-
viduals that have managed to survive in their environment,
at least for a while, to descendants is the basic trick of life.
As Fisher and Eigen[18] have shown by means of a simple
mathematical model, the main problem of reproduction is
the correctness of the replication. The longer the chain of
information to code an individual becomes, the more it is

necessary to reduce errors caused by the environment. De-
spite of the necessity to repair copying errors { this has been
achieved by proper enzymes, also encoded in the genome
of all living beings { the error rate has never dropped to
zero. On the contrary, there seem to exist error enhancing
enzymes, as well, speci�cally working at certain loci of the
chain of informations delivered from one generation to the
next. Recently, the journal Nature reported that one has
identi�ed co-activators and co-repressors, a fact underpin-
ning that the idea of correlated mutations as used in ES is
not at all an artifact.
Without variation there is no improvement, thus no

adaptation nor any invention of new forms of life would
be possible without the risk of imperfection. The redun-
dancy of the genetic code and all other transformation
steps between genotype and phenotype �nally seem to re-
sult in an error distribution at the phenotypic level that
can most easily be described by a normal or a geometri-
cal density function: Smaller errors are more frequent than
larger ones. The mutation steps are neither purely random
or volume-oriented, nor are they in�nitesimally small or
path-oriented. Organic evolution is more of a pogo-sticking
trial-and-error process, a compromise between e�cient lo-
cal and e�ective global search.
Moreover, it is essential to remember that we are usually

beginning from scratch when we use EA for solving opti-
mization tasks. The low mutation rates currently observed
in nature may be adequate for situations near the opti-
mum or equilibrium, but not for starting from scratch. In
each case, self-adaptation of the mutation strength is the
best way to handle the search for an appropriate mutabil-
ity. `Intelligent' variation, genetically programmed, seems
to be a hidden or at least di�cult to detect on-line adap-
tation process.

D. Ontogeny and Multicellularity; Fuzzi�cation

Early life forms have been unicellular, �rst prokaryotic
only, later mostly eukaryotic, i.e. with distinct organelles in
a containment being responsible for the control of di�erent
subtasks of the reproduction cycle. A very early inven-
tion of real life after merely aggregating undi�erentiated
cells into case-based agglomerates, was the programming
of di�erentiated cells of multicellular systems within one
genome. In this way, the ontogeny of an individual from
one �rst cell by consecutive cell divisions could lead to an
assembly of specialized tissues that are dividing the labour
of solving the di�erent tasks to be performed in order to
survive { for a while { as a whole. This early invention
of real life has not been taken into account in evolution-
ary computation so far. We shall make use of that feature
in section IV to tackle the problem of self-adapting, loci
speci�c mutation rates.

E. Sexual Propagation and Polygeny

Mixing of genetic information to be transmitted to a de-
scendant from more than one ancestor seems to be an old
achievement of the prokaryotic regime. It has been reduced
to a now dominant bisexual hereditary scheme in multicel-



lular eukaryotic living beings. Beyer has shown[19] that
recombination can yield linear speedup with the size of the
population. This needs parallel processing of the reproduc-
tion step. He argues that recombination can be regarded
as genetic repair, i.e., two unfavorable deviations from a
nearby better position compensate each other. This seems
to be contradictory to the building block hypothesis, but
both e�ects may contribute to the `bene�t of sex', depend-
ing on the speci�c situation. In epistatic convex landscapes
the former e�ect should be more important than the latter.
Sexual propagation seems to go hand in hand with poly-

ploidy, or at least diploidy. This feature has not yet been
fully explored in connection with EA. One application has
been in creating an ES to solve multiple criteria decision
making (MCDM) problems[20]. The di�erent criteria are
stochastically involved in the selection step, thus driving
the population toward the Pareto-optimal subset of solu-
tions. Indeed, polyploidy is often observed in environments
where drastic changes occur frequently. Maintaining a
longer-term memory of past successes seems to be the main
bene�t of polyploidy. One may presume therefore that the
e�cacy of organic evolution as well as its e�ciency would
be substantially lower if sexuality and polyploidy had not
been `invented' in nature. Both features are no fancy.

F. External Checkup; No Pity

No individual organism is guaranteed to reproduce, due
to an un�t mutated genome, a change of the environment,
or due to predators. Obviously, practically all species pro-
duce more than one descendant per ancestor. Otherwise,
the population at hand would die out �nally. Perhaps
Charles Darwin would not have insisted upon his view of
natural selection if Thomas Malthus had not predicted mis-
ery to mankind due to inherent over-reproduction and lim-
ited resources a century earlier. Malthus assumed the for-
mer to be a geometrically, the latter to be a linearly increas-
ing process. Over-reproduction can, and sometimes must,
be substantial to maintain the population size against
predators, accidents, and lethal variations. Generally, lim-
ited food supply as well as the check for survivability ac-
cording to all kinds of tests like compatibility with `eternal
laws' of nature and escapability from predators, keeps down
the abundance of a species to what `the rest of the world'
allows. Altogether, this might be called environmental se-

lection, reducing the higher number of newborns to a lower
number of individuals �t enough to transmit their tested
information content to the next generation. Each individ-
ual or species dying prematurely gives room to others that
are more �t.
The term `struggle for life' often leads people to believe

in some other form of selection, i.e. tournaments between
individuals existing simultaneously. If this were the dom-
inant form of selection, how could it work in the realm of
plants? Since EA otherwise model very primitive life, en-
vironmental selection may be the more adequate operator.
Mating selection may play an additional role sometimes.
But guinea-pig researchers report that parents with an av-
erage �tness often have most progeny[21].

G. Parallelism; No Central Control

Parallelism is an intrinsic feature of evolution in nature.
There are always many individuals at the same time in-
volved in the `life game'. Whether one should model arti�-
cial evolution in a synchronous or an asynchronous manner
largely depends on the type of hardware used and on the
CPU time necessary for the evaluation of the �tnesses. In
nature, one has seasonality playing a role, but no strong
synchronization, since there is no central controller known.
Larger populations tend to split up into subgroups, more

or less isolated from each other, depending on the inten-
sity of migration between the subgroups. Modeling that
kind of geographical dispersion can be done in a �ne- or a
course-grained manner with strictly local interactions only
or many kinds of intermediary forms. The incest taboo,
much earlier in place than human beings, seems to be
useful in searching mates that are di�erent enough from
each other to gain the full bene�t from recombination (see
above). It has been demonstrated that global convergence
can be enhanced by distributed searchers and local opera-
tors[22], [23].

IV. An Old Idea Revisited: Somatic Fuzzification

To show the bene�t of somatic mutations during the on-
togeny of a multicellular organism, let us start o� with a
well studied situation, called the Counting Ones Problem

(COP). The virtual individuals (we call them BW) do have
n = 256 phenotypic characters, e.g. color patches on their
surface that can be either black or white. Correspondingly,
their genome contains n = 256 gene loci xi; 8i = 1; 2; : : : ; n
with just 2 alleles A and C, xi = À' encoding a white
patch, xi = `C' a black one. The environment evaluates
a phenotype according to a merit function F (x). For the
COP it can be formulated as

F1(x) =
nX
i=1

f(xi) with f(xi) =

�
0 if xi 6= x�i
1 if xi = x�i

(1)

where the string fx�g characterizes the optimal genotype.
F1 just counts the number of matching loci.
If we start with a pure random setting fx(0)g we can

expect F
(0)
1 � n

2 = 128 as the value of the merit function
fromwhich any kind of stepwise improvement process could
begin. The simplest way would be to successively switch all
xi from their current state to their counterstate and �xing
them if an improvement occurred, otherwise setting them
back to their old state. This would cost exactly n = 256
trials since it is unknown which loci must be ipped. On
average, every second trial is successful, and we end up

with F
(256)
1 = 256.

B�ack[24] has investigated the same selection scheme, the
so-called (1+1) ES, but with randomized variation. Each of
the loci undergoes ipping with the same mutation rate p.
This probability determines the expected number of steps
until the optimum is reached. If one does not choose an
elitist selection like above, but e.g. the standard roulette
wheel proportional selection used within GA, then the
search process �nally uctuates at some distance from the



optimum, the average distance itself increasing with the
mutation rate chosen (see Rudolph[17]).

The last step in the elitist case would be best done with
a mutation rate p = 1

n
, and it would take about n tri-

als to hit the last incorrect gene. When half of the genes
are correct, the optimal mutation rate is p = 1

2 . In gen-
eral, the optimal mutation rate depends on the number of
already correct positions in the genome, but this kind of
knowledge is normally not available. M�uhlenbein[25] de-
rived an expression for the expected number N of steps
under (1 + 1) ES selection conditions and with p = 1

n
dur-

ing the whole search process and 50% correct genes at the
beginning: N = e n ln(n2 ), which leaves us with N � 3376
for n = 256. For a more rigorous treatment see Droste et
al.[26].

Multimembered (�; �) ES have been very successful in
self-adapting mutation strengths on-line, even di�erent
ones for each gene. For the basic algorithm used in the
following we refer to[27]. Local mutation rates pi for al-
ready correct genes should decrease, those of others �rst
increase until the mutation takes place, and thereafter de-
crease again in order not to lose the merit won. How-
ever, any kind of self-adapting strategy parameters relies
upon improvements gained with more appropriate values
for them. This condition is violated with an only stepwise
changing merit function like F1, especially in the �nal stage
of the search.

Very early in the course of natural life, multicellular or-
ganisms appeared. Their ontogeny starts with one cell, of
course. This cell divides, forming two cells with all com-
partments for each, including the nucleus containing the
complete genetic information. The process is repeated M
times so that at the end the adult individual consists of
2M cells, in case of human beings about 250 � 1015. Dif-
ferent cell types (about 256 according to Kau�man[28])
do have di�erent tasks and are individually programmed
by the genome; the others are `duplicates', not necessarily
completely equal to their prototype, however.
According to �ndings of guinea-pig researchers (e.g. G�art-

ner[29]), cloned, i.e. genetically equal, individuals di�er
considerably with respect to their phenotypes. One must
assume that errors occur during the cell doublings. No
other source of the `intangible variance' could be identi-
�ed. Errors are controlled by repair enzymes and it is thus
rather straightforward to assume that the somatic muta-
tion rate during ontogeny is similar if not equal to the ge-
netic mutation rate.
Let us exemplify this on the basis of the COP. There are

now n = 256 cell types, coded in the genome. They should
appear after the �rst 8 cell divisions. Within the genome
we also have n mutation rates pi associated to the n cell
types. During the latter 42 out of 50 cell divisions copying
errors occur at that rate just like genetic mutations appear
from one generation to the next. Thus, 256 patches of 242

genetically equal but somatically di�erent cells form each
whole BW.

Instead of black and white patches we now �nd all kinds
of grey ones, depending on their genetically determined

color xi and on the somatic mutation rate. The latter is
taken to be equal to the (genetically encoded) genetic mu-
tation rate pi. One could speak of some kind of fuzzi�ca-
tion of the phenotypic characteristics. Knowing the genetic
value and the mutation rate p one can calculate the distri-
bution of the grey tones. It is a binomial distribution with
probability w(k;M; p) that just k out of 2M cells are mu-
tated (see Schwefel[30]1

w(k;M; p) =

�
2M

k

�
qk(1� q)2

M
�k with

q =
1

2
[1� (1 � 2p)M ]: (2)

Though the distribution is symmetric only for p = 1
2 ,

it can be approximated largely by a normal distribution
N (�; �) ifM is large enough { which is the case here. After
normalization to the interval [0; 1] indicating the extremes
`all white' and `all black' the mean � of the deviation is

� = q and the variance2 �2 = 1�(2q2)M

1�2q2 � (1� q2)=2M+2. By

adding a bonus term N (�i; �i) for those loci which do not
yet match and subtracting a penalty (malus term) of equal
size for the already matching ones, selection now can work
toward adjusting local mutation rates. Note that here is
no learning during the life span of the individuals, since no
feedback to �tness is assumed during the cell divisions. The
smoothing e�ect of the this kind of phenotypic plasticity to
the �tness landscape may be similar to that of ontogenetic
learning according to the model of Hinton and Nowlan[31],
but the mechanism is completely di�erent.
Now, we can simulate the process using a modi�ed merit

function

F 0

1(x) =
nX
i=1

f 0(xi; pi) with

f 0(xi; pi) =

�
0 +N (�i; �i) if xi 6= x�i
1�N (�i; �i) if xi = x�i

(3)

Fig. 2 illustrates the principle of a genetic `bonus' for dif-
ferent numbers N of cell divisions considered.
It may happen that f 0(xi; pi) leaves the interval [0; 1].

In that case we simply cut o� at zero or one, respectively.
With that trick we can easily solve the COP. Figures 3
to 5 show results from several simulations with a (15; 100)
ES using global discrete recombination for both object and
strategy parameters. Fig. 3 presents a plot of both F1
as well as F 0

1 for the best individual over the number of
generations (3 runs). Fig. 4 zooms into a section of one
simulation to see the di�erences between the genetic merit
function F1 and the phenotypic one (F

0

1). Dealing with 256
bits at the same time, the principle of a genetic bonus or
malus (penalty) cannot be seen as well as in Fig. 2.
Fig. 5 shows 3 out of the 128 mutation rates pi belong-

ing to gene loci that are not correct at the start. It also

1Although the deduction in[30] is wrong, the resulting binomial
distribution is asymptotically correct[34].
2Hofmeister [35] has derived the formula for the unnormalized vari-

ance: 2M�2
�

1�(2q2)M

1�2q2
� (1� q2), q = 1� 2m.
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contains one single and the average of those mutation rates
that belong to already correct gene loci. All mutation rates
are initialized with pi = 10�4. These plots demonstrate the
rise and fall of mutation rates, just as needed for reaching
and then conserving the genetic mutations.
The COP is a separable objective, thus an easy to handle

problem. If we switch to the following one

F2(x) =
n�1X
i=1

f(xi)f(xi+1) + f(xn)f(x1) (4)

and the corresponding F 0

2, the situation becomes more dif-
�cult insofar as now always two neighboring genes have to
match with their optimal settings at the same time. Sa-
lomon[32] has shown that the e�ort to solve such problems
with m-fold interdependencies increases with nm in case
of one common mutation rate p = 1

n
. With the concept

of somatic mutations as above, the case m = 2 in F2 is
not so much more time consuming as to be expected ac-
cording to[32]. The mutation rates belonging to such pairs
behave correspondingly. No diagram is shown for this case.
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Instead, we directly turn to the most awful scenario with
m = n, as is true for the following product sum:

F3(x) =
nY
i=1

f(xi) (5)

under otherwise same conditions. Now, all necessary ge-
netic mutations must happen at the same time. If half of
the genes are already matching, the probability of such a
`big jump' would be ( 1

n
)
n

2 (1� 1
n
)
n

2 under a commonmuta-
tion rate of p = 1

n
. At �rst sight, it seems nearly impossible

to solve such a problem e�ciently. Multicellular individu-
als with genetically encoded single mutation rates can do
it by means of somatic mutations as shown in Figures 6 to
8.
Again, Fig. 6 presents a plot of both F3 as well as F 0

3

for the best individual over the number of generations (3
runs). Since there is just one genetic improvement from
zero to one, no zoom is presented in this case. Instead, the
number of already correct bits is shown as Fig. 7.
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Fig. 8 shows selected mutation rates over time, similar
to Fig. 5. Instead of three arbitrary mutation rates, those
of the last three genes that still have to ip are shown,
however.
A �nal remark after all the recommendations for EA

above seems to be appropriate here: EA are not rivaling
with traditional optimization methods. They cannot be
more e�cient than problem-speci�c solution procedures.
Their rationale lies in the fact that it is often not eco-
nomic to devise a special algorithm for just one new type
of application. Then one may be better o� with an opti-
mum seeking procedure that uses no special knowledge and
takes the situation at hand as a `black-box' one { as all non-
specialized EA do. Of course, domain-speci�c knowledge
may be introduced in devising situated operators[33].

V. A Future for Evolutionary Computation?

Will the exponential growth of EC go on? No, at least
not ultimately, since no exponential growth can last forever
in a �nite world. Thus, there are three possible futures:
saturation, decline, or (mostly ir-)regular oscillations.
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Fig. 8. Self-adaptation of three mutation rates responsible for bits
with a starting value of `0' (mr�f�), of the averagemutation rate
of those bits initialized correctly (mr � ravg) and one mutation
rate responsible for a bit with a correct starting value (mr�r192).

Applications of EA are likely to still grow during the
next decade or so, since they do not yet have penetrated
all reachable domains. Stagnation or decline will follow
thereafter, depending on whether the thrust of the basic
idea of imitating life will lead to even more e�cacious al-
gorithmic models of organic evolution or not. Currently,
it seems as if the hunt for e�ciency in particular problem
solving situations drowns the search for better understand-
ing and properly modeling real life. Only sporadically, new
models emerge opening broader �elds of applications. Most
likely, this situation will yield further ups and downs of the
�eld of EC as a whole.
On the other hand, there is a larger scope and poten-

tial for the parallel problem solving from nature paradigm.
Besides phylogeny and ontogeny, there is the vast and not
yet well understood realm of epigenesis, which may hold
treasures of procedures worthwhile to be mimicked. The
cooperative interplay between di�erent cell types in the im-
mune system, the social behavior of individuals in groups,
and many more phenomena of real life still wait to be mim-
icked. They may be of use for evolvable hardware, for
assemblies of autonomous hard- and software agents, for
emergent computation, etc.
We should not dream, however, of machines that govern

the world. Humans must remain the chief inspectors { even
if they are not perfect. A machinery declared to be perfect
(if it were as intelligent as a human only, it would not be
perfect) could deprive us of some more evils, but also of
our future, a necessary ingredient of which is uncertainty.
Current experience with software technology lets us fear
(hope?) that the software of an intelligent machine will
never be perfect. Evolvability needs imperfection.

VI. Summary

The test functions used in this study are so simple math-
ematically that one easily can devise more e�cient solution
methods than evolutionary algorithms. But this is not the



point. Natural systems do not and cannot rely upon ma-
nipulations inspired analytically. They are groping in the
dark. Nevertheless, they have found clever ways to �nd
their way to top solutions. What we have shown above
is the ability of a simple evolutionary algorithm to self-
adapt internal strategy parameters like loci-speci�c muta-
tion rates under harsh conditions like binary optimization,
even with full interdependence of all variables (epistasis).
Though none of the individuals knows about the land-
scape's model, the population searching collectively learns
to adapt some kind of internal model, represented by mu-
tabilities scaled properly. This is achieved by mimicking
the trick of multicellularity. Whether this approach can
be applied successfully to technical or other problems re-
mains to be seen. That it has been successful in nature,
e.g. in case of butteries that mimic color patterns on their
wings of non-savory examples to escape from predation, is
without doubt.
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